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Abstract

Multidimensional scaling is widely used to handle data which consist of dissimilarity measures be-
tween pairs of objects or people. We deal with two major problems in metric multidimensional
scaling — configuration of objects and determination of the dimension of object configuration —
within a Bayesian framework. A Markov chain Monte Carlo algorithm is proposed for object con-
figuration, along with a simple Bayesian criterion for choosing their effective dimension, called
MDSIC. Simulation results are presented, as well as examples on real data. Our method provides
better results than classical multidimensional scaling for object configuration, and MDSIC seems
to work well for dimension choice in the examples considered.

Key Words: Clustering, Dimensionality, Dissimilarity, Markov chain Monte Carlo, Meitric
scaling, Model selection.
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1 Introduction

Multidimensional scaling (MDS) is concerned with data that are given as dissimilarity measures
between pairs of objects or individuals. Its goal is to represent the objects or individuals by points
in a (usually) Euclidean space.

MDS has its roots in psychology, specifically psychophysics, being based on the analogy between
the psychological concept of similarity, and the geometrical concept of distance. Two individuals
are viewed as similar if they tend to have similar responses to the same stimuli. Subsequently, it has
been widely used in other social and behavioral sciences. Recently, interest in MDS has increased
further, due to its usefulness in some currently rapidly developed subjects, such as genomics (Tib-
shirani et al. 1999), and information retrieval for the Web and other document databases (Schutze
and Silverstein, 1997).

One of the main applications of MDS is visualization, where the user wants to represent a
complex set of dissimilarities in a form that is easier to see. One reason for this is to see if visually
apparent clusters are present in the data. Another application is exploration, where the user wants
to understand what the main dimensions underlying the dissimilarities are. For example, the
objects in MDS might be political candidates, and the data might consist of subjective similarity
judgements. MDS might help to suggest which political positions or characteristics are important
in forming similarity judgements (e.g. position on Social Security, age, tendency to tell jokes). A
third application is hypothesis testing. Monogaphs on MDS include Davison (1983), Young (1987),
Cox and Cox (1994), and Borg and Groenen (1997).

An important issue in MDS is configuration of objects, i.e., estimation of values for attributes of
objects. A commonly used MDS method for pairwise dissimilarity data was developed by Torgerson
(1952, 1958). Object configurations are easy to compute with this method, now called classical
MDS (CMDS). It gives complete recovery (up to location shift) of object configurations when
the given dissimilarites are exactly equal to the Euclidean distances and when the dimension is
correctly specified. In many practical situations, however, there are measurement errors in the
observed dissimilarities and no clear notion of dimension. Maximum likelihood MDS methods have
been developed for handling measurement errors — see, for instance, Ramsay (1982, 1991), Takane
(1982), Takane and Carroll (1981), MacKay (1989), MacKay and Zinnes (1991), Groenen (1993),
and Groenen, Mathar, and Heisser (1995). However, justification of maximum likelihood relies on
asymptotic theory and computation requires nonlinear optimization. The number of parameters
to be optimized over typically grows at a faster than linear rate relative to the dimension, so that

the asymptotic theory may not apply in high dimensions, as pointed out by Cox (1982). Moreover,



the likelihood surface will tend to have many more local minima when there are more dimensions,
and finding a good initial estimate will be correspondingly more difficult.

Another important issue in MDS is dimensionality, i.e., the number of significant attributes.
Despite its importance in many applications, there is no definitive method for determining dimen-
sion for dissimilarity data. The most commonly used method is to search for an elbow, that is a
point where a measure of fit or a measure of contribution to the dissimilarity levels off, in a plot of
the measure versus dimension (Spence and Graef, 1974; Davison, 1983; Borg and Groenen, 1997).
However, it is often difficult to find an elbow — especially when there are significant errors — and
visual inspection of a plot may be misleading since its appearance often depends on the relative
scale of the axes.

In this paper, we deal with these two important issues in MDS within a Bayesian framework.
We use a Euclidean distance model and assume a Gaussian measurement error in the observed
dissimilarity. Under the model, we propose a simple Markov chain Monte Carlo (MCMC) algorithm
to obtain a Bayesian solution for the object configuration. We found that the proposed method,
which we call Bayesian MDS (BMDS), provided a much better fit to the data than CMDS in all
of the examples we tested. Moreover, the improvement in performance of the proposed BMDS
scheme relative to CMDS was more pronounced when there were significant measurement errors in
the data or when the Euclidean model assumption was violated.

Based on the BMDS estimate of object configuration over a range of dimensions, we propose
a simple Bayesian criterion to choose an appropriate dimension. This criterion, called MDSIC, is
based on the Bayes factor, or ratio of integrated likelihoods, for the BMDS estimated configuration
under one dimension versus a different dimension. In simulated data, we found that the criterion
works well for Euclidean models with measurement error that is not too large. In real examples,
we found that the criterion gave satisfactory results. We also give an example of cluster analysis on
real dissimilarity data in which the BMDS estimates of object configuration are used in conjunction
with model-based clustering (Banfield and Raftery, 1993; Fraley and Raftery, 1998).

In our approach, observed dissimilarities are modeled as equal to Euclidean distances plus mea-
surement error. In this sense, what we do here can be viewed as a Bayesian analysis of metric MDS,
and here being Bayesian seems to confer the benefits of yielding good estimated configurations, and
providing a formal way of choosing the dimension. A great deal of MDS research, however, has
focused on nonmetric MDS, in which the relationship between dissimilarity and underlying distance
is modeled as nonlinear. One could use the basic ideas here to do Bayesian nonmetric MDS, and
we suggest some ways of doing this in Section 6.

The rest of the paper is organized as follows. Classical MDS (Torgerson 1952, 1958) is briefly



reviewed in Section 2. Bayesian MDS is described in Section 3: Section 3.1 presents the model
and the prior, Section 3.2 presents an MCMC algorithm, and Section 3.3 describes the estimation
of object configuration from the MCMC output. Based on the BMDS output, a simple Bayesian
dimension selection criterion, MDSIC, is described in Section 4. Some simulated and real examples

are given in Section 5. We conclude with a summary and discussion in Section 6.

2 Classical Multidimensional Scaling

In this section, we briefly review classical MDS. Let d;; denote the dissimilarity measure between
objects ¢ and j, which are functionally related to p unobserved attributes of the objects. Let
X; = (41, ..., T4p) denote an unobserved vector representing the values of the attributes possesed by
object 1.

Torgerson (1952, 1958) developed a technique for multidimensional scaling, now called classical
MDS. Assume that the dissimilarity measure, d;;, is the distance between objects ¢ and j in a

p-dimensional Euclidean space, i.e.,

bij = \l D (wik — zjr)?, (1)

k=1

where x; is the k-th element of x;. The elements x;; are unknown, and the goal of MDS is to
recover them from the dissimilarity data. Because of the non-identifiability of the solution under
location shift, the center of the object points is placed at the origin, so that > ; z;; = 0 for
j =1,...,p, where n is the total number of objects.

Construct a double-centered matrix A with elements a;; defined by
"_—1(52—52—52 52
Q5 = 2( ij i 5+ 2),

where
2 1~ 2 _ 1= p 2 1 v p
On=— D dyy 0= dy, =53 ) dy
j=1 i=1 i=1j=1
It was shown by Togerson (1952, 1958) that

P
aij = Z Tik - Tjk, for all 4,7, ie., A =XX', (2)
k=1
where X is the n X p matrix of object coordinates. The coordinates of X can be recovered from
the spectral decomposition of the matrix A in (2). If the observed dissimilarities, d;;, satisfy the

Euclidean distance assumption and there is no measurement error, then the Euclidean distances



computed from the matrix X satisfying (2) will be exactly equal to the given dissimilarities. How-
ever, when the model assumption is violated or when there are significant measurement errors in
the data, CMDS estimates of object configuration may not be very useful.

It should be noted that the matrix X satisfying (2) is not unique, because Euclidean distance
is invariant under translation, rotation, and reflection about the origin. However, there is a unique
CMDS solution having zero mean, diagonal covariance, and some fixed coordinate signs.

At present, there is no definitive method for choosing the effective dimension of x;, the number
of object attributes that contribute significantly to the dissimilarities. A common way of assessing
dimension is to look at the eigenvalues of the scalar product matrix A. The k-th eigenvalue is
a measure of contribution of the k-th coordinate of X to squared distances. Small eigenvalues
(relative to the largest eigenvalue) imply that the corresponding coordinates make little contribu-
tion to the squared distances and hence only the first p coordinates of X corresponding to the
first p significantly large eigenvalues suffice to represent the objects. To determine significantly
large eigenvalues, one may draw a plot of the ordered eigenvalues versus dimension and look for a
dimension at which the sequence of eigenvalues levels off. If each d;; is equal to a p-dimensional
Euclidean distance between objects ¢ and j as given in (1), then the plot should level off precisely
at dimension (p + 1).

A measure of fit, called stress, is also commonly used to determine the dimensionality. Several
definitions of stress have been proposed; the one we use here, and perhaps the mostly commonly

used one, is

Yoz (dij — 8i5)?
iz diy

where &-j is the Euclidean distance obtained from the estimated object configuration (Kruskal

STRESS = \l

1964). A plot of STRESS versus dimension will level off at the true dimension p, if d;; = &-j and
&j is given by (1).

Both methods rely on detecting an elbow in a sequence of values, that is, a point where the
plot levels off. However, in real data that do not conform exactly to the model or in which there
is a significant amount of measurement or sampling error, an elbow may be difficult to discern. In
addition, visual detection of an elbow in a plot can be misleading since the outcome may depend

on the scale of the axes.



3 Bayesian Multidimensional Scaling

3.1 Model and Prior

Dissimilarity data can be obtained in various forms. However, since Euclidean distance is easy to
handle and is relatively insensitive to the choice of dimension compared to other distance measures,
it tends to be used in cases in which the dimension is unknown unless there is strong theoretical
evidence for preferring a non-Euclidean distance (Davison, 1983). Thus, for Bayesian MDS we
model the true dissimilarity measure §;; as the distance between objects 7 and j in a Euclidean
space, as given in (1).

In practical situations there are often measurement errors in observations. In addition, dis-
similarity measures are typically given as positive values. We therefore assume that the observed
dissimilarity measure d;; comprising the data is equal to the true measure d;; plus a Gaussian error,
with the restriction that the observed dissimilarity measure is always positive. In other words, given

d;j, the observed dissimilarity measure d;; is assumed to follow the truncated normal distribution

dij ~ N(0ij,0%) I(dij > 0), i#3j,i,5=1,..,n, (3)

where 0;; = \/ > b1 (zik — zji)?, and the z;; are unobserved. From this, the likelihood function of

the unknown parameters X = {x;} and o? is

(X, 0?) (02)_"‘/2 exp —#SSR— Zlog ® (%) , 4)
i>j
where m = n(n—1)/2 is the number of dissimilarities, SSR = 3, ;(dij — ;) is the sum of squared
residuals, and ®(-) is the standard normal cdf.

For Bayesian analysis of the model, we need to specify priors for X = {x;}, and ¢2. For the
prior distribution of x;, we use a multivariate normal distribution with mean 0 and a diagonal
covariance matrix A, i.e.,

x; ~ N(0,A),

2 we use a conjugate prior

independently for ¢ = 1,..,n. For the prior of the error variance o
o? ~ IG(a,b),

the inverse Gamma distribution with mode b/(a + 1). For a hyper-prior for the elements of A =

Diag(A1, ..., Ap), given dimension p, we also assume a conjugate prior,

Aj ~ IG(a, Bj),



independently for j = 1,..,p. We assume prior independence among X, A, and 02, i.e., 7(X, 0%, A) =
7(X) m(0?) w(A), where 7(X), 7(c?), and m(A) are the priors given above.

When there is little prior information, one may use either the results from a preliminary run
or the results from CMDS for parameter specification in the priors. For instance, one may choose
a small a for a vague prior of 02 and choose b so that the prior mean matches with the estimated
mean of o2 from CMDS. Similarly, for the hyper-prior of \;, one may choose a small & and choose
Bj so that the prior mean of \; matches with the j-th diagonal element of the covariance matrix
S, = %2?21 x;x; obtained from CMDS. As noted above, the CMDS solution can be transformed
so as to have zero mean and diagonal covariance.

Such a prior is mildly data-dependent, and it might be argued that this violates the definition
of a prior distribution. However, we view this prior as an approximation to the elicited data-
independent prior of an analyst who knows a little, but not much, about the problem at hand.
Because this prior is diffuse relative to the likelihood, the estimation results are unlikely to be

highly sensitive to its precise specification.

3.2 Markov Chain Monte Carlo

From the likelihood and the prior, the posterior density function of the unknown parameters
(X,0%,A) is

7(X,0%,A|D) o (o%)(m/2+aet])
X 11’_[ )\;n/Z exp [—%SSR — Zlog ® (%) - %ixé[\lxi — % — i% , (5)
j=1 i>j i=1 j=1"4

where D is the matrix of observed dissimilarities. Because of the complicated form of the posterior
density function (5), numerical integration is required to obtain a Bayes estimate of the parameters.
In particular, the posterior is a complicated function of the x;’s, which in most cases are of high
dimension. We therefore use a Markov chain Monte Carlo (MCMC) algorithm (e.g. Gilks et al.
1996) to simulate from the posterior distribution (5). Our algorithm proceeds by iteratively gen-
erating new values for each object configuration x;, the error variance o2, and the hyperparameter
A, given the current values of the other unknowns.

We first suggest initialization strategies for the unknown parameters which are needed for the
MCMC algorithm. For initialization of x;, one may use the output, xz(o), of x; from CMDS since
it is easy to obtain. The resulting X can then be centered at the origin and then transformed
using the spectral decomposition so as to have a diagonal covariance matrix, thus conforming to

(0)

the prior. From the adjusted x; ’’s, one can compute the sum of squared residuals SSR© and

an estimate 002 = SSR( /m which can be used as an initial value of 62 in the algorithm. In



addition, diagonal elements of the adjusted sample covariance matrix of X can be used as initial
values for the A;’s.

We now describe the details of sample generation in the MCMC algorithm. At each iteration,
we simulate a new value of A; from its conditional posterior distribution given the other unknowns.
From (5), the full conditional posterior distribution of \; is the inverse Gamma distribution IG(a+
n/2,B;+s;/2), where s;/n is the sample variance of the j-th coordinates of x;’s. We use a random
walk Metropolis-Hastings step (Hastings, 1970) to generate x; and o? in each iteration of the
MCMC algorithm.

Generation of x;

A normal proposal density is used in the random walk Metropolis-Hastings algorithm for gener-

ation of x;. To choose the variance of the normal proposal density, we note that the full conditional

posterior density of x; is

1 n 5
m(xilelse) ox exp [—Z(Q1+Q2) — > log @ (ﬂ>] ’
Jj#,I=1
where
1 n ) o
Q=— Y @y-dy)%  Q=xAx
J#u3=1
Since
1 1
—5 0 —dig)? = — (5%- — 2d,;6:; + dz?j)
1
= e} [(Xi - xj)’(xi - Xj) — 2dij\/(xi _ Xj)’(XZ' _ X]_) n d%j

is a quadratic function of x; with leading coefficient equal to 1/0? and Q7 has n — 1 of this kind
while (5 has only one quadratic term with coefficient A, ()1 would dominate the full conditional
posterior density function of x; unless there is strong prior information. Thus, we may consider Q¢
only and approximate the full conditional variance of x; by ¢2/(n — 1) and choose the variance of
the normal proposal density to be a constant multiple of 02/(n — 1). With this proposal density,
the random walk M-H algorithm can be summarized as:

? c

o . .
71)>, where x;” is the current sample of x; and £ is a

(n—

o Generate x¥ from N (xf,k *

constant.
e Replace x¢ by xV with probability min{1, 7(x}|else) /7 (x¢ |else) }.

Generation of o2



From a preliminary numerical study, we found that

m(0?|else) o (o)~ (M/2a+1) exp —%(SSR/? +b)— > log ® (5ﬂ>]
o =7 o
is well approximated by the density function of IG(m/2 + a,SSR/2 + b), up to a constant of
proportionality. When the number of dissimilarities, m = n(n — 1)/2, is large, which is often the
case since m is a quadratic function of n, the inverse Gamma density function is well approximated
by a normal density. Thus, we propose a random walk M-H algorithm with a normal proposal
density with variance proportional to the variance 72 of IG(m/2 + a,SSR/2 + b) distribution,

namely:

2

e Generate 02V from N (02, k x v?), where 62C is the current sample of 2.

e Replace 02¢ by o2V with probability min{1, 7(c?" |else) /7 (c2C |else)}.

3.3 Posterior Inference

Iterative generation of {x;,i = 1,..,n}, 0%, and \;,j = 1,..,p, for a sufficiently long time provides
a sample from the posterior distribution of the unknown parameters, and Bayes estimation of the
parameters can be obtained from the samples. However, because the model assumes a Euclidean
distance for the dissimilarity measure d;;, the posterior samples of {x;} would be invariant under
translation, rotation and reflection about the origin, as in classical MDS, unless there is strong
prior information to the contrary. We can retrieve only the relative locations of the objects from
the data, and not their absolute locations. Hence the convergence of §;; rather than X needs to be
checked to verify the convergence of MCMC. The near lack of identifiability in X also suggests the
use of sample averages as Bayes estimates to be inadvisable, since the MCMC samples of X may be
unstable even when the distances ¢;; are stable. Thus, we take an approximate posterior mode of X
as a Bayes estimate of X, i.e., the BMDS solution of the object configuration. The posterior mode
provides relative positions of x;’s corresponding to the maximum posterior density. A meaningful
absolute position of X may be obtained from an appropriate transformation, if desired.

To obtain the posterior mode of X, one may compute the posterior kernel for each MCMC
sample. However, this can be time consuming, since the posterior is complicated. However, we
observed that the likelihood dominates the prior and in the likelihood (4) the term involving SSR is
dominant, so that the posterior mode of X can be approximated by the value of X which minimizes

the sum of squared residuals SSR.



Since the center and direction of X can be arbitrary, we post-process the MCMC sample of X

at each iteration using the transformation

x; = DL(x; — x),

where x is the average of x;’s and D, is the matrix whose columns are the eigenvectors of the
sample covariance matrix S; = 1 3% (x; — X)'(x; — X) of x;’s. This transformation does not solve
the non-indentifiability problem but the new x;’s have mean 0 and a diagonal covariance matrix to

correspond to the prior specification.

4 Dimensionality

BMDS as described in the previous section gives object configurations in a given dimensional
Euclidean space. In most cases the dimension of the objects (the number of significant attributes)
is unknown. In this section, we propose a simple Bayesian dimension selection criterion based on
the BMDS object configurations.

Consider the dimension p as an unknown variable and assume equal priors for all values of p.

Then the posterior is given as

7T(X,0'2,A,p|D) x Z(X,02,p|D)7r(X\A,p)7r(02)7r(A|p)

/2 —m 1 /2 T A 1
= (2m)"™ %0 exp[—FSSR - Zlog@(&ij/o)] - (2m) /2 H Aj n/Qexp[— Z Ksj]
i>j j=1 j=1""4

x T(a)"'6%(02) @ Dexp[—b/o?] - T(a) P ﬁ BENT O eap[—5; /]
j=1

=A- h(02,X) : g(A,X),

where

S5 = szzj’ (6)

=1
A = () ™mP)/2 D(a) "1 T(a) P ﬁ B2, (7)
j=1
h(o®X) = (02724t exp [-(SSR/2+1) /0%, (8)
g(AX) = JIA 2D exp=(s5/2 + B)/A]. 9)
j=1

Note that, because of the post-processing described in Section 3.3, the x;’s have mean 0 and a

diagonal covariance matrix.



We adopt a Bayesian approach to choosing the dimension. We view the overall task to be that of
choosing the best configuration, and hence we view the choice between dimension p and dimension
p’ as being between the estimated configuration with dimension p and the estimated configuration
with dimension p'. Thus, we consider the marginal posterior, (X, p|D), of (X, p) with X equal to
the BMDS solution and choose the value of p which gives the largest value of 7(X,p|D). When
choosing between dimension p and dimension p’, this is based on the posterior odds for the estimated
configuration of dimension p as against the estimated configuration of dimension p'.

Now, to compute the criterion, note that

m(X,p|D) /l(X,O’Q,p|D)7T(O'2)dO'2'/T['(X,A,p)dA
~ (X, p|D)n(X,p),

where (X, p|D)is the marginal likelihood of (X,p) and 7(X,p) is the marginal prior of (X,p).
The marginalised likelihood term would increase as p increases. However, the marginal prior term
decreases as p increases, since we are using a diffuse (but proper) prior, and so this term penalizes
more complex models. The approach has the simplicity of a maximum likelihood method, as well
as the advantage of a Bayesian method in penalizing more complex models.

Integrating the function g(A, X) given in (9) with respect to A gives

/g(A, X)dA =TP(n/2 + «) f[(sj/2 + Bj) (/). (10)

Jj=1

The integral of the function h(c?, X) given in (8) with respect to o2 is approximately equal to
/ h(o?,X)do? ~ (27)Y?(m/2) Y2 (SSR/m) "™/ > exp[—m/2]. (11)
This formula is justified in the Appendix. From these,
m(X,p|D) x A- /h(<72)da2 . /g(A,X)dA

= A*.(SSR/m)™/*+1. ﬁ (s5/2+ B;)~(/2+e), (12)

Jj=1
where

A* = A-(2n) 2 TP(n)2 4+ a) (m/2)"'/? exp[-m/2).

To clarify the dependence of X on p, let X®) denote the BMDS solution of X when the dimension
is p. There is a difficulty in directly comparing (X®), p) and (XP+) p41). The marginal posterior
(X, p|D) is dependent on the scale of X, because it includes the term H§:1(3j/2 + ﬂj)_(”/2+a).

Note that s;/n is the sample variance of the j-th coordinate of X. However, without improvement

10



in the fit, the scale of X may change with the dimension p. Given the same Euclidean distances,
the coordinates of X would get closer to the origin as p increases, unless all the extra coordinates
are equal to 0. For instance, the Euclidean distance between —1 and 1 in one-dimensional space
is equal to the Euclidean distance between (1/4/2,1/+/2) and (—1/v/2, —1/4/2) in two-dimensional
space, and hence the variance in each coordinate is smaller in two-dimensional space. This would
give a smaller s; and hence a larger (X, p|D) in a higher dimension, even though there is no
change in the distance and the fit.

To circumvent this scale dependency, a dimension selection criterion should compare X’s in the
same dimension. For this, let X*®+1) = (X() : 0) in (p + 1)-dimensional space, which has the first

P+1) provides the same

p coordinates equal to X(?) and the last coordinates all equal to 0. Then X
Euclidean distances and the same fit as X®) and may be considered an implantation of X®) in
(p + 1)-dimensional space. Ideally, if p is the correct dimension, then the optimal solution X (p+1)
in (p 4 1)-dimensional space would be X*®+Y_ Thus, we compare X*®*1) and X®*1) and choose
p to be the dimension if X*®*+1 has a larger marginal posterior density than X®+1.
From (12), the ratio of the marginal posteriors of X*®+1 and X®+1) js
n(XP+tY) p 4+ 1|D)

n(X*®*, p +1|D)

m ~(n/2+0)
_ <55R,,+1> /2 (”“ j/2+ﬁj)

e

SSR;_i_l i1 3/2+'BJ
—m —(n/2+a) —(n/2+a)
(e ()
SSRy j=1 S§p)/2 + B; Bj ’

where s(p ) is s; given in (6), computed from X(®), Clearly, the ratio R, depends on the choice of
the hyper-parameters o and 3; of A.

When there is no strong prior information, a reasonable choice for «, §; in (p + 1)-dimensional
space might be a = % and §; = %sgp +) /n so that the prior information roughly corresponds to the
information from one observation. This is close to the unit information prior, which was observed by
Kass and Wasserman (1995) to correspond to the BIC approximation to the Bayes factor (Schwarz
1978), and by Raftery (1995) to correspond to a similar approximation to the integrated likelihood.
Raftery (1999) argued that this is a reasonable proper prior for approximating the situation where
the amount of prior information is small.

This yields the ratio

—m/2+1 ( +1) —(n+1)/2
R, = _SSRIH'l ﬁ i (n+1) (n+ 1)—(71—1—1)/2
P SSRP et n+7"p+1)) ’
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where r](-p ) _ sg-p +) / sg-p ). Taking minus twice the log of the ratio gives
LR, = -2log R,
= (m—2)1og(SSRy+1/SSRy) (13)
LA P e (RS |
+ S (n+1)) log % +(n+1) log(n+1) ;. (14)
j=1 (n+ T )

Note that the term (13) in LR, is roughly the log likelihood ratio, and would be negative since
higher dimension results in a smaller SSR. The term (14) plays the role of penalty on the increase
of dimension by one and would be positive if rj(-pﬂ) <1 and H§:1 r§p+1) > 1/(n+ 1). When there
is no significant change in X between p- and (p + 1)-dimensional spaces, then r](-p *D ~ 1 and the
penalty term is approximately (n + 1) log(n + 1).

A positive LR, would prefer the dimension p to (p 4+ 1) and a negative value would prefer the
dimension (p+1) to p and hence one can select the dimension where the value of LR, turns positive.

Alternatively, if we define M DSIC as

MDSIC; = (m—2)log SSR; (15)
p—1

MDSIC, = MDSICi+ Y LR, (16)
7j=1

then the optimal dimension is the one which achieves the minimum of M DSIC),.

5 Examples

BMDS requires that prior parameters be specified. For all the examples given in this section, we
chose 5 degrees of freedom a for the prior of 02 and chose b to match the prior mean of o2 with
the estimate obtained from the CMDS. Note that a smaller a would not make much difference
since m = n(n — 1)/2 is large. For the hyper-prior of A;, we choose a = 1/2 and 3; = %sg-o)/n,
where 55-0) /n is the estimated variance of the j-th coordinate of X obtained from the CMDS, which
roughly corresponds to information from one observation as described in Section 4.

For the constant k in the Metropolis-Hastings algorithms for generating x; and o2, we chose
k = 2.382 for both x; and o2 as suggested by Gelman et al. (1996). We found reasonably fast
mixing in MCMC with this choice of k.

5.1 A Simulation

As an illustrative example, we generated 50 random samples of x; from a 10-dimensional multivari-

ate normal distribution with mean 0 and variance I, the identity matrix. We used the Euclidean

12



CMDS BMDS
dim | STRESS | STRESS LRT | Penalty | MDSIC
1 0.6622 0.4864 | -1118.7 177.0 | 10673
2 0.4943 0.3078 | -830.4 170.7 | 9731
3 0.3720 0.2192 | -693.0 165.3 | 9071
4 0.2751 0.1651 | -638.1 164.2 | 8544
5 0.2037 0.1272 | -499.2 174.2 | 8070
6 0.1580 0.1037 | -535.5 171.4 | 7745
7 0.1092 0.0833 | -334.0 178.6 | 7381
8 0.0809 0.0727 | -237.6 177.8 | 7225
9 0.0672 0.0660 | -195.2 182.2 | 7165
10 0.0614 0.0609 -23.6 196.8 | 7152*
11 0.0658 0.0603 12.3 203.4 | 7326
12 0.0715 0.0606 -22.8 195.0 | 7541
13 0.0784 0.0601 2.5 232.7 | 7713
14 0.0835 0.0601 -29.8 170.5 | 7949

Table 1: Analysis of the simulation data in Example 1, x; ~ N1¢(0,I). The minimum MDSIC is
marked with a star.

distances between pairs of x;,x; as dissimilarities ¢;;. Given these d;;’s, we generated the observed
distances d;; from a normal distribution with mean J;; and standard deviation 0.3, truncated at 0.
Thus, the data consist of a 50 x 50 symmetric matrix of dissimilarities computed from Fuclidean
distances with Gaussian errors.

Using the results from CMDS for initialization, BMDS as described in Section 3 was applied
for various values of the dimension p. Time sequence plots from samples of J;;’s and o? in MCMC
converged quickly, similarly to Figure 2. We took samples from 10000 consecutive iterations after
3000 burn-in iterations from MCMC. With minimum SSR and x; obtained from the BMDS, we
applied MDSIC described in Section 4 to select the dimension of x;. The results are summarized
in Table 1.

The first and the second columns show values of STRESS from CMDS and BMDS, respectively.
The third and the fourth columns show the likelihood ratio term of (13) and the penalty term
of (14), respectively. The last column shows the MDSIC given in (16). It can be observed that
BMDS gives a better fit than CMDS, providing a smaller STRESS, especially when the dimension
is incorrect. This is interesting because, for visualization purposes, dimension p = 2 is often chosen.
In this case, the STRESS from CMDS for dimension 2 is 60% greater than for BMDS.

It is interesting to note that, for CMDS, STRESS increases after dimension 10 while for BMDS,
STRESS stays roughly constant after dimension 10. Ideally, since the true dimension is 10, all
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NY 22 36 48 43 26 51 24 73 100
Azores AZ PY 54 33 59 33 31 37 93 88
Bagdad 39 BD PS 57 7 56 72 50 57 105
Berlin 22 20 BN RO 57 66 18 69 113 84
Bombay 59 20 39 BY RE 63 74 57 57 101
BuenosAires 54 81 74 93 BS SF 59 7 61 74
Cairo 33 8 18 27 73 (o]0 SO 64 117 71
Capetown 57 49 60 51 43 45 CN SE 57 7
Chicago 32 64 44 81 56 61 85 CH SI 49
Guam 89 63 71 48 104 71 88 74 GM SY
Honolulu 73 84 73 80 76 88 115 43 38 HU
Istanbul 29 10 11 30 76 8 52 55 69 81 IL
Juneau 46 61 46 69 7 63 103 23 51 28 55 JU
London 16 25 6 45 69 22 60 40 75 72 16 44 LN
Manila 83 49 61 32 111 57 75 81 16 53 57 59 67 MA
Melbourne 120 81 99 61 72 87 64 97 35 55 91 81 105 39 ME
Mexico City 45 81 61 97 46 7 85 17 75 38 71 32 56 88 84 MY
Montreal 24 58 37 75 56 54 79 8 s 49 48 26 33 82 104 23 ML
Moscow 32 16 10 31 84 18 63 50 61 70 11 46 16 51 90 67 44 MW
New Orleans 36 72 51 89 49 68 83 8 7 42 62 29 46 87 93 9 14 58
New York 25 60 40 78 53 56 78 7 80 50 50 29 35 85 104 21 3 47
Panama City 38 78 59 97 33 71 70 23 90 53 68 45 53 103 90 15 25 67
Paris 16 24 5 44 69 20 58 41 76 75 14 47 2 67 104 57 34 16
RioDeJaneiro 43 69 62 83 12 61 38 53 116 83 64 76 57 113 82 48 51 72
Rome 21 18 7 38 69 13 52 48 76 80 9 53 9 65 99 64 41 15
SanFrancisco 50 75 57 84 64 75 103 19 58 24 67 15 54 70 79 19 25 59
Santiago 57 88 78 100 7 80 49 53 98 69 81 73 72 109 70 41 54 88
Seattle 46 68 51 7 69 68 102 17 57 27 61 9 48 67 82 23 23 52
Shanghai 72 44 51 31 122 52 81 70 19 49 49 49 57 12 50 80 70 42
Sydney 121 83 100 63 73 90 69 92 33 51 93 7 106 39 4 81 100 90
Tokyo 73 52 56 42 114 60 92 63 16 39 56 40 60 19 51 70 65 47

Figure 1: Airline distances between cities (100 miles) (The World Almanac, 1966).

coordinates except for the first 10 should be roughly zero and SSR should be about the same
after dimension 10. This is precisely what ocurred in BMDS, indicating that BMDS handles the
measurement errors well.

The third and the fourth columns show that the log likelihood ratios computed from the BMDS
solution for X decrease monotonically as p increases upto 10, that there is no significant change
after dimension 10, and that the penalties stay about the same for various p. Moreover, the MDSIC

assumes a minimum at the correct dimension, namely 10.

5.2 Airline Distances between Cities

The World Almanac (1966, p.510) provided airline distances between 30 principal cities of the
world, which are shown in Figure 1. Cities are located on the surface of the earth, a 3-dimensional
sphere, and airplanes travel on the surface of the earth. Thus, airline distances are not exactly
Euclidean distances and we may expect the dimension of x; to be between 2 and 3.

The BMDS is applied to the data. Figure 2 shows time sequence plots of SSR and some §;;’s
from 10000 MCMC iterations after a burn-in of 3000. The plots suggest that convergence has been
achieved. Here we are interested in finding an approximate posterior mode of X rather than its
full posterior distribution, so that convergence requirements are less stringent than if one seeks the
full posterior distribution. The BMDS results are shown in Table 2.

Bayesian MDS yielded much smaller SSR than classical MDS in all cases. The estimated SSR
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CMDS BMDS
dim | STRESS | STRESS | LRT | Penalty | MDSIC
0.6782 0.3617 | -704.2 95.7 | 5336
0.4682 0.1604 | -548.5 91.4 | 4727
0.3811 0.0851 4.7 108.0 | 4270*
0.4006 0.0856 -24 88.9 | 4383
0.4139 0.0854 4.1 143.9 | 4469

U W N~

Table 2: Analysis of the City Data. The minimum MDSIC is marked with a star.

dropped very quickly until dimension 3 and then increased slightly at dimension 4. MDSIC selected
dimension 3. We observed that the last coordinates of x; in dimension 4 are almost equal to 0,

indicating strong evidence for dimension 3.

Figure 3 is a plot of the observed airline distances versus the estimated Euclidean distances.
A perfect fit would yield a forty-five degree line as shown in Figure 3. The estimated Euclidean
distances from BMDS are represented as red dots and and those from CMDS as green dots. One
can see that BMDS provided points very close to the forty-five degree line except for the points
corresponding to large distances. The fit gets worse as the distance gets larger, because when
cities are farther apart, there is a greater discrepancy between airline distance and 3-dimensional

Euclidean distance.

Figure 4 shows plots for the locations of cities, obtained from BMDS with dimension p = 3,
and rotated manually to approximately fit the true location of the cities. One can observe that the
cities are located approximately on the surface of a sphere with the radius of the earth and that

the locations of the cities are well recovered.

5.3 Careers of Lloyds Bank Employees, 1905-1950

Sociologists are interested in characterizing and describing careers, to answer questions such as:
What are the typical career patterns in a given period in a particular society? Have they been
changing over time? Have people become more mobile occupationally?

One approach to doing this views a career as a sequence of occupations held, for example,

in successive years, and then seeks to measure the similarity or dissimilarity between different
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Figure 2: Time sequence plots of SSR and some 4;;’s from MCMC iterations after burn-in for the
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Figure 3: Observed and estimated distances for the Airline distance data (in units of 100 miles).
The estimated distances from BMDS are represented by red dots and those from CMDS by green
dots.
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careers. Abbott and Hrycak (1990) proposed measuring the dissimilarity between the careers of
two individuals by counting the minimum number of insertions, deletions and replacements that
would be necessary to transform one career into another. Costs are associated with each kind
of change, and the dissimilarity between the two careers is then measured as the total cost of
transforming one career into another. This approach, known as optimal alignment, is borrowed
from molecular microbiology, where it is applied to the comparison of DNA and protein sequences
(Sankoff and Kruskal 1983; Boguski 1992).

Here we reanalyze some data considered by Stovel et al (1996), consisting of the careers of
80 randomly selected employees of Lloyds Bank in England, whose careers started between 1905
and 1909. This is part of a much larger study aimed at discovering how career patterns in large
organizations have evolved over the course of the twentieth century. The more immediate goal here
is to discover what the typical career sequences are, for data reduction and exploratory purposes,
and also as a basis for further analysis. For each employee, information about his work position
is available for each year he was at Lloyds. The information consists of the nature of the position
(four categories, from clerk to senior manager), and the kind of place they were in (six categories,
from small rural place to large city).

From the sequence data, an 80 x 80 matrix of dissimilarity measures was obtained, using the
method of Abbott and Hrycak (1990); for more details, see Stovel et al (1996). Clearly the dissim-
ilarities are not Euclidean distances, and may not satisfy certain geometric properties that hold for
Euclidean distances, such as the triangle inequality. Our approach is to model the dissimilarities as
before, with the idea that the non-Euclidean nature of the dissimilarities can be modeled at least
approximately as part of the error. As we will see, this supposition turns out to be reasonable in
practice.

We applied BMDS to the dissimilarity data. Table 3 presents the results of the analysis together
with STRESS from CMDS. Again, BMDS performed much better than CMDS especially when the
dimension is too small or too large. The improvement in performance of BMDS is more pronounced
in this example than in the two previous examples. This suggests that BMDS is more robust than
CMDS to variations in the alleged dimension and to violations of the Euclidean model assumption.

Dimension 8 is chosen as optimal since MDSIC attains its minimum at 8. Thus, the estimated
configuration X when p = 8 can be used as a final estimate of X. Figure 5 shows the fitted
and observed dissimilarities for both BMDS and CMDS. The BMDS fitted dissimilarities fit the
observed ones very well, considerably better than the CMDS ones; the sum of squared residuals for
BMDS is less than half that for CMDS.

Figure 6 gives pairwise scatter plots of the first four dimensions of the BMDS estimates of X.
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CMDS BMDS
dim | STRESS | STRESS LRT | Penalty | MDSIC
1 0.5357 0.3545 | -4228.1 325.8 | 26924
2 0.3390 0.1815 | -3380.3 315.7 | 23022
3 0.2190 0.1063 | -2924.9 310.9 | 19957
4 0.1280 0.0669 | -1540.1 317.5 | 17343
5 0.0891 0.0524 | -941.2 330.5 | 16120
6 0.0725 0.0452 | -600.9 326.7 | 15510
7 0.0619 0.0411 | -392.7 330.3 | 15236
8 0.0558 0.0386 | -221.8 330.5 | 15173*
9 0.0547 0.0372 27.8 367.6 | 15282
10 0.0556 0.0374 7.7 396.1 | 15677
11 0.0600 0.0375 -17.3 310.3 | 16081
12 0.0637 0.0374 -21.2 444.5 | 16374

Table 3: Analysis of the LLoyd Bank data. The minimum MDSIC is marked with a star.

estimated

observed

Figure 5: Fitted and observed dissimilarities for the LLoyd bank data. The red dots represent
BMDS and the green dots correspond to CMDS.
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The fourth dimension clearly separates two outliers. On closer inspection of the data it turned out
that these were both individuals who had very short careers at Lloyds. They spent only a few years
there, whereas all the other employees were at Lloyds for at least ten years.

The sociologists’ interest in these data is primarily to characterize the typical career patterns at
Lloyds in this period. To try to answer this question, we applied model-based clustering (Banfield
and Raftery 1993; Fraley and Raftery 1998) to the BMDS estimate of X, after removing the
two clear outliers. This models the data as a mixture of multivariate normals, allowing for possible
geometrically-motivated constraints on the covariance matrices of the different groups. The number
of groups and the clustering model are both chosen using approximate Bayes factors, approximated
via BIC.

Model-based clustering clearly identified three groups. These are shown in Figure 7, which
displays the first two components of the BMDS solution. The three groups selected make clear
substantive sense: Group 1 consists of 16 employees who had shorter careers (22 years or less), and
spent all or almost all of their career at the lowest clerk rank. Group 2 consists of 30 employees
with long careers (40 years or more), almost all of whom ended their careers at the lowest clerk
level. Group 3 consists of 32 employees, most of whom were promoted and ended their careers as

managers.

6 Summary and Discussion

In this paper, we have proposed a Bayesian approach to object configuration in multidimensional
scaling and a simple Bayesian dimension criterion, MDSIC, based on the estimated object con-
figuration. Bayesian MDS provided a better fit than classical MDS (Torgerson, 1952,1958) in all
the cases we tried. The improvement in performance of BMDS is more pronounced when the dis-
similarities are different from Euclidean distances and the effective dimension is ambiguous. This
sort of robustness is useful in practice, since in applications dissimilarities are often not Fuclidean
distances and the concept of dimension may not even arise in their formulation. Another consid-
eration is that one may often want to use two or three dimensions for visual display, although the
true dimension may be much higher. The proposed dimension selection criterion, MDSIC, is easy
to compute and gives a direct indication of optimal dimensionality. An advantage of MDSIC is
that it uses the BMDS output, which seems to give good object configurations even when some of
the model assumptions are violated.

A key feature of BMDS is that when the dimension increases, the coordinates for lower dimen-
sions are changed, whereas in CMDS the coordinates for a lower dimension are always a subset of

those for a higher one. The coordinates obtained from the lower dimensions are not necessarily
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Figure 7: Lloyds bank Data: First two BMDS dimensions, with the 3-group model-based clustering
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of the component multivariate normal distributions, and the dotted lines show their principal axes.
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an optimal choice when the dimension increases, and retaining them in higher dimensions may
adversely affect the performance of CMDS.

One common reason for doing MDS is to cluster the objects. In our third example, we showed
how model-based clustering can be used to do this, providing a formal basis for choosing the
number of groups. The results were substantively reasonable and useful. Combining BMDS and
model-based clustering thus provides a fully model-based approach to clustering dissimilarity data,
including ways to choose the dimension of the data and the number of groups.

A more comprehensive approach to this problem would be to build a single model and carry out
Bayesian inference for it. This could be done by using a prior distribution of X that is based on a
mixture of multivariate normal distributions, rather than a single one as here. Then MCMC could
be used to estimate both object configuration and group membership simultaneously. This approach
could also provide a way of choosing the dimension and the number of groups simultaneously, rather
than sequentially, as we did in our example. This seems desirable because there may be a tradeoff
between dimension and number of groups. A maximum likelihood approach to the problem of
clustering with multidimensional scaling of two-way dominance or profile data was proposed by
DeSarbo et al (1991), but this is somewhat different from the present context, where the data come
in the form of dissimilarities.

We have modeled dissimilarities as being equal to Euclidean distances plus error. This cor-
responds to metric scaling, and so our approach would perhaps best be called Bayesian metric
multidimensional scaling. There has been a great emphasis in the MDS literature on nonmetric
scaling, however. In nonmetric scaling, dissimilarities are modeled as equal to a nonlinear function

of distance. This could be incorporated in the present framework by replacing (3) by
dij ~ N(g(8i5),0%) I(dij > 0), i# j,i,j =1,...m, (17)

where g(-) is a nonlinear but monotonic function. One could postulate a parametric model, or a
family of parametric models, for g; one such family of models was proposed by Ramsey (1982). Then
standard Bayesian inference via MCMC would again be possible, leading to Bayesian nonmetric
multidimensional scaling.

Apart from the present work, we do not know of any other Bayesian analyses of multidimensional
scaling for dissimilarity data. DeSarbo et al (1999) proposed a Bayesian approach to multidimen-
sional scaling when the data are in the form of binary choice data, but this is rather different from

the present context, where the data take the form of dissimilarities.
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APPENDIX

Justification of (11)
Integration of h(c?,X) where

h(o‘Z,X) _ (0.2)—(m/2+a+1) exp
i>]

SSR/2+b dij
— Zlog @ (7])]

is not straightforward. However, in most cases m = n(n — 1)/2 is very large and the likelihood of

02 dominates the prior and hence h(0?,X) is approximately proportional to the likelihood

_SSR_ glog ® (‘%ﬂ)] . (18)

1(6?,X) = (¢%)"™? exp 95

In addition, because of the large m, the likelihood [(02,X) is well approximated by a normal

density function. Thus, applying a Laplace approximation to the integral of I(c2, X) gives
/h(a2,X)d02 ~ /1(02,X)da2 ~ (2n)2H-1?1(X, 6?), (19)

where H is the minus Hessian of the log likelihood and 62 is the MLE of o2.
We now argue that the probability ®(d;;/0) is unlikely to have much effect on the model
comparison, and can safely be ignored. Suppose we are comparing dimension p with dimension

(p + 1). We distinguish between two situations. Suppose first that the true dimension is (p + 1).
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Then, asymptotically, the term (—SSR/20?) will dominate the exponent on the right-hand side of
(18), dimension (p+1) will be preferred, and the term =, ; log ®(;;/0) will be immaterial. Second,
suppose instead that the true dimension is p. Then the fitted J;; will be the same, asymptotically,
for dimension p as for dimension (p + 1), and so the term ;. ;log ®(d;;/0) will be the same for
both dimensions. Thus it will cancel in the comparison, and can again be ignored.

Thus, we ignore the term 3, ;log ®(d;; /o) and use the approximation

Z(O'Z,X) ~ l*(UZ,X) = (0_2)—771,/2 exp [_SSR] .

202

Replacing [ by [* and H by the minus Hessian H* of [* in (19) and letting 62 = SSR/m which

maximizes [* gives the formula (11).
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